BY1 January 2014

Question Marking details
Marks
Available
1 (a) Base clearly circled; 1
(b) (The pentose in) RNA is ribose and in DNA is deoxyribose; 2the base thymine is only found in DNA and the base uracil is found inRNA;NOT: ref. helix/strands/uracil and thymine unqualified
(c) Adenine with thymine and cytosine with guanine;2Appropriate use of \{data/ratios\} for \{human/sea urchin/wheat\};
Need data on both A T and C G
NOT 'they are the same' or reference to ratio the same in all organisms
Question 1 total[5]
(a) (i) B, D, C, F, E;
(ii) Cytokinesis; 1
(b) (i) 4 cells are produced compared with $2 /$ cells are haploid as oppose to diploid/only contain one set of chromosomes compared with two sets of chromosomes;
NOT 2 chromosomes (can be neutral)
As a result of two (consecutive) divisions;
(ii) (Meiosis produces haploid gametes which) allows the diploid state to be restored \{at fertilisation/in the zygote\} / prevents doubling of the chromosome number at fertilisation;
Meiosis produces genetically different \{gametes/cells\} / results in genetic variation (in the offspring);
QuestionMarking details(ii) Hydrolysis;1
(iii) Glycerol and fatty acid drawn correctly;
Glycerol and fatty acid named;
(iv) Glycerol and fatty acids have different structures / OWTTE; 1 (not just reference to monomers)
(b) (i) (Oleic acid is) unsaturated; 2
It contains at least one $\mathrm{C}=\mathrm{C}$ double bond (in the hydrocarbon chain) / is not fully saturated with hydrogen (atoms); NOT hydrogen bonds/ fewer hydrogens
(ii) Any 2 Max 2
protection of internal organs against impact;
thermal insulation buoyancy;

waterproofing skin/fur;

source of metabolic water;Question 3 total[9]
Question Marking details4 (a) (i) Activation energy;
(ii) Line starting and finishing at the same point but with a lower 1 activation energy;
(b) The active site (of succinate dehydrogenase) has a specific shape; Succinate has a complementary shape; (and therefore) \{fits/ binds/ bonds to\} into the active site; NOT attaches
(c) (i) I The concentration of succinate/ substrate; II As the concentration of the \{succinate/substrate\} increases $\{$ the rate of reaction/production of fumarate increases\};
(ii) The concentration of succinate dehydrogenase/ enzyme; all of its active sites are occupied (at any given moment);
(d) (i) Malonate has a similar \{shape/structure\} to \{succinate/ substrate\} / malonate has a complementary \{shape/structure\} the active site; NOT same shape Malonate \{binds/ competes\} to the active site; Prevents succinate binding / fewer enzyme-substrate complexes are formed; (MP3 must be in context of competitive inhibition)
(ii) Curve rising at a lower rate and plateaus at the max rate at a higher concentration;

Accept max rate may not be reached

Question 4 Total
(a)

Organelle	Name	Function
K	nucleus;	contains DNA which \{codes for / controls \} protein synthesis;
L	ribosomes;	synthesise proteins;
M	Golgi apparatus/body;	packaging of proteins (for secretion from the cell) / (chemically) modifies proteins / produces glycoproteins / produces lysosomes;

(b) (i) They have been cut in different plane/ angle;
(ii) (Loop of) DNA;
(70S) ribosomes;
Both possess plasma membranes; NOT double membrane
(iii) Mitochondria: (statements should be comparative)

Has a double membrane;
No cell wall;
No capsule;
No flagellum/ pili;
No mesosome
No plasmids;

Question 5 Total

QuestionMarking details
(ii) glucose broken down by enzyme; the \{hydrogen peroxide/oxygen\} is \{detected/absorbed\} by electrode; an electric signal is generated/ changes chemical to electrical signal; the greater the concentration of \{glucose/hydrogen peroxide/oxygen\} the greater the signal;
(b) (i) The enzyme converts glucose into it's isomer fructose / glucose and fructose are isomers;
(ii) Add Biuret solution / sodium hydroxide solution \& copper sulphate; (reject if reference to heat) The solution would remain blue / no colour change would occur;
(iii) can be re-used;
has greater stability/denature at higher temperatures;
can catalyse reactions/greater stability over a wider range of pH ; More than one enzyme can be used/enzymes added or removed easily/ greater control over process/ can be used in a continuous process;
(Reference to cost is neutral)

Question 6 Total

Question Marking details(a) (i) $-700(\mathrm{kPa})$1
(ii) I arrows drawn from F to G, F to E and from G to E ; (allow ecf) 1II Water molecules move down a water potential gradient / from 2a\{higher /less negative\} water potential to a\{lower /more negative\}water potentialBy osmosis; (in correct context)
(b) (i) 50% of the cells were plasmolysed; 1
(ii) -430 kPa ; 2(At incipient plasmolysis) \{the pressure potential equals zero/ thesolute potential = water potential\};
Question 7 Total[7]
8 (a) A polysaccharides \{are polymers/ formed during condensation reactions\};
B (monomers are) joined by glycosidic bonds;
C starch is made up from alpha glucose;
D starch is composed of amylose and amylopectin / contains both 1,4 \& 1,6 bonds;
E glycogen is made from (alpha) glucose;
F \{Starch/glycogen\} are insoluble and therefore osmotically inert/ OWTTE;
G \{Starch/glycogen\} are storage molecules because \{glucose can be added or removed easily / they have a compact structure\};
H cellulose is composed of beta glucose;
I alternate glucose molecules are rotated by 180° / head up head down structure;
J this form long straight chains (of beta glucose)/ only contains 1-4 bonds;
K \{hydrogen bonds / cross links\} form between the chains;
L forming microfibrils;
M cellulose provides \{strength/rigidity\} to plant cell walls / cellulose prevents osmotic lysis in plant cells;
N in chitin some OH groups are replaced with amino acids / amine groups / glucose amine;
O chitin provides strength to fungal cell walls / (arthropod) exoskeletons;

8 (b) A globular proteins show tertiary / quaternary structure;
B they have a \{specific/precise\} 3D shape;
C their shape is maintained by bonds between (atoms within the) Rgroups;

D disulphide bridges / ionic bonds / hydrogen bonds / Van der Walls forces / hydrophobic interactions; (any 2) NOT peptide

E intrinsic proteins span the membrane;
F extrinsic proteins are \{embedded in one half of the membrane / on the surface of the membrane\};

G correct reference \{made to the distribution of charge / polar and nonpolar groups $\}$ on the \{intrinsic/extrinsic $\}$ proteins;

H channel proteins have a hydrophilic pore;
I this allows \{polar molecules/ions\} to pass through the membrane;
J by (facilitated) diffusion; NOT active transport
K carrier proteins allow the passage of molecules \{with a complementary shape/ by the protein changing shape ;

L by (facilitated diffusion and) active transport;
M Glycoproteins contain a carbohydrate chain attached to a protein;
N \{Glycoproteins/ extrinsic proteins\} act as hormone receptors / are involved in cell recognition;

O enzymes may be located in the membrane / catalyse reactions / carry out digestion / synthesise ATP;

Question 7 Total

